Practice Questions
 Cambridge IGCSE
 Mathematics 0580

To accompany the revised syllabus for examination from 2020.

Cambridge

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge. UCLES retains the copyright on all its publications. Registered centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within a centre.

Contents

Introduction 4
Questions 5
Simultaneous equations (E2.5) 5
Graphs of functions (E2.11) 6
Derivatives (E2.13) 12
Congruence (E4.5) 15
Alternate segment theorem (E4.7) 17
Sketch graphs of trigonometric functions (E6.3) 19
Conditional probability (E8.6) 22
Stem-and-leaf diagrams (C9.3 / E9.3) 23
Box-and-whisker plots (E9.6) 25
Answers and mark scheme 27

Introduction

The purpose of this booklet is to provide additional practice questions and answers for some topics which have been introduced into Cambridge IGCSE Mathematics (0580) for first assessment in 2020.

Practice questions have been provided to exemplify a range of types of questions which could appear either as whole questions or as parts of larger structured questions.

The answers and a typical mark scheme are also provided.

Other support materials are available on the School Support Hub https://schoolsupporthub.cambridgeinternational.org

E2.5 Simultaneous equations

1 Solve the simultaneous equations. You must show all your working.

$$
\begin{aligned}
& y=3 x-2 \\
& y=x^{2}
\end{aligned}
$$

$x=$
$y=$
$y=$

2 The graphs of $y=3 x^{2}+7 x-4$ and $y+2 x=10$ intersect at the points A and B.
Find the coordinates of A and B.
You must show all your working and give your answers correct to two decimal places.
\qquad

E2.11 Recognise, sketch and interpret graphs of functions

3

Write down the letter of the graph which could represent each of the following equations.
(a) $y=2-x^{2}$
(b) $y=2^{-x}$
(c) $y=\frac{2}{x}$

4 Sketch the graph of $2 x+3 y=18$.
On your sketch, write the values where the graph crosses the x-axis and the y-axis.

5 Sketch the graph of $y=x^{2}+2 x$. On your sketch, write the values where the graph crosses the x-axis and the y-axis.

6

NOT TO
SCALE

The diagram shows a sketch of the graph of $y=a x^{2}+b x+c$.
Find the values of a, b and c.

$$
\begin{aligned}
& a= \\
& b= \\
& c=
\end{aligned}
$$

7 Sketch the graph of $y=x^{2}-3 x-10$.
On your sketch, write the coordinates of any turning points and the values where the graph crosses the x-axis and the y-axis.

8 (a) Solve the equation $(x-5)\left(2 x^{2}-18\right)=0$.

$$
x=\ldots \ldots \ldots \ldots \ldots \ldots \ldots, x=\ldots \ldots \ldots \ldots \ldots \ldots \ldots, x=.
$$

(b) Sketch the graph of $y=(x-5)\left(2 x^{2}-18\right)$.

On your sketch, write the values where the graph crosses the x-axis and the y-axis.

E2.13 Derivatives

$9 y=3 x^{2}-4 x+7$
Find the derivative of y.
$10 \mathrm{f}(x)=4 x^{3}-7 x$
Find the gradient of the graph of $\mathrm{f}(x)$ at $x=5$.

11 The derivative of $\mathrm{f}(x)=x^{3}-12 x+5$ is $3 x^{2}-12$.
Find the coordinates of the turning points of $\mathrm{f}(x)$.
\qquad
\qquad

12 A tangent is drawn to the graph of $y=x^{2}+3 x$ at the point A.
The gradient of this tangent is -5 .
Find the coordinates of point A.
\qquad .) [6]

13 Find the equation of the tangent to the graph of $y=3 x^{2}-5 x+2$ at $x=-1$. Give your answer in the form $y=m x+c$.
$y=$

14 A curve has equation $y=x^{3}-6 x^{2}+16$.
Find the coordinates of the two turning points.
\qquad
\qquad

E4.5 Congruence

15

NOT TO
SCALE

Show that these two triangles are congruent.

A, B and C are points on a circle, centre O, with radius 5 cm .
$A C$ is a diameter of the circle and point D lies on $A C$.
$E F$ is a tangent to the circle at C.
$D E=10 \mathrm{~cm}$.
(a) Show that triangle $A B C$ is congruent to triangle $D C E$.

Give a geometrical reason for each statement you make.
(b) Calculate $A D$.

$$
A D=
$$

cm [3]

E4.7 Alternate segment theorem

17

A, B and C are points on a circle.
$D E$ is a tangent to the circle at C.
Angle $B A C=19^{\circ}$ and angle $A C B=93^{\circ}$.
Find the value of x.

$$
x=.
$$

A, B and C are points on a circle.
$E F$ is a tangent to the circle at C.
D is a point on $A C$.
Angle $C B D$: Angle $A B D=3: 1$.
Find angle $A D B$.
Give a geometrical reason for each step of your working.

E6.3 Sketch graphs of trigonometric functions, properties of trigonometric functions, solving trigonometric equations

19 Find the coordinates of the two turning points of $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
\qquad
\qquad
$20 \cos 70^{\circ}=\cos P$ where $180^{\circ} \leqslant P \leqslant 360^{\circ}$.
Find the value of P.

$$
P=
$$

21 On the axes, sketch the graph of $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

22 Solve $4 \tan x+3=-1$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
\begin{equation*}
x=. ~ a n d ~ x= \tag{3}
\end{equation*}
$$

23 Solve $5-2 \cos x=6$ for $180^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
x=
$$

[3]

24 (a) Complete the table of values for $y=2 \sin 3 x$.

x	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°	110°	120°
y	0	1	1.7	2		1		-1		-2	-1.7		0

(b) Draw the graph of $y=2 \sin 3 x$ for $0^{\circ} \leqslant x \leqslant 120^{\circ}$.

(c) Use your graph to solve the equation $2 \sin 3 x=1.5$.

$$
\begin{equation*}
x= \tag{2}
\end{equation*}
$$

\qquad or $x=$

E8.6 Conditional probability

25 Two fair dice are rolled.
The scores on the two dice are added to give the total.
Given that the score on at least one of the dice is 2 , calculate the probability that the total is 5 .

26 The mass, $m \mathrm{~kg}$, of each of 100 adults is recorded.
The table shows this information.

Mass ($m \mathrm{~kg}$)	$30<m \leqslant 35$	$35<m \leqslant 50$	$50<m \leqslant 70$	$70<m \leqslant 80$	$80<m \leqslant 100$
Frequency	7	15	30	36	12

Three adults are picked at random from those with a mass of 70 kg or less.
Calculate the probability that one of them has a mass of 35 kg or less and the other two each have a mass greater than 35 kg .

C9.3 / E9.3 Stem-and-leaf diagrams

27 A group of 12 students each runs 50 metres.
The stem-and-leaf diagram shows the time, in seconds, taken by each student.

| 6 | 3 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 1 | 2 | 2 | 5 |
| 8 | 3 | 4 | 5 | 9 |
| 9 | 3 | 8 | 9 | |
| | | | | |

Key: $7 \mid 1=7.1$ seconds
Calculate the mean time.

28 Some people are asked about how much money, in dollars, they spent on their mobile phone last month. The stem-and-leaf diagram shows this information.

1	1	2	3	5	8	8	9
2	2	3	5	6	6	7	9
3	3	5	5	9			
4	0	1	2	3			
5	0	3	8				
6	4						

Key: $2 \mid 3=\$ 23$
(a) Find the number of people asked.
(b) Find the median amount spent.
(c) Calculate the percentage of people who spent more than $\$ 40$.

E9.6 Box-and-whisker plots

29 The mass, in kg , of each of 15 parcels is recorded below.

4.90	5.10	5.25	5.30	5.40
5.45	5.55	5.55	5.60	5.75
5.80	5.95	6.15	6.25	6.50

On the grid, draw a box-and-whisker plot to show this data.

30

The box-and-whisker plot shows information about the heights, in metres, of a group of 15-year old boys.
(a) (i) Find the range.
\qquad m [1]
(ii) Find the median.
\qquad
(b)

The box-and-whisker plot shows information about the heights, in metres, of a group of 15-year old girls.

Make two comparisons between the distributions for the heights of the boys and the heights of the girls.
You must use statistics to support your comparisons.

1 \qquad
\qquad

2 \qquad
\qquad

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Question	Answer	Marks	Partial Marks
1	$x^{2}=3 x-2$ or better	M1	
	$(x-2)(x-1)$	M1	FT their 3 term quadratic - e.g. use of formula or complete square
	$\begin{aligned} & {[x=] 1,[y=] 1} \\ & {[x=] 2,[y=] 4} \end{aligned}$	B2	B1 for each correct pair or for $x=1$ and $x=2$
2	$3 x^{2}+9 x-14=0$	B2	B1 for $y=10-2 x$
	$\frac{-9 \pm \sqrt{9^{2}-4 \times 3 \times-14}}{6}$	M2	FT correct substitution seen for their 3 term quadratic B1FT for $\sqrt{9^{2}-4 \times 3 \times-14}$ or $\frac{-9+\sqrt{ }}{2 \times 3}$ or $\frac{-9-\sqrt{ }}{2 \times 3}$
	1.13 or $1.129 \ldots$ and -4.13 or $-4.129 \ldots$	B2	B1 for each If 0 scored SC1 for 4.13 or 4.129... and -1.13 or $-1.129 \ldots$
	$(1.13,7.74)$ and (-4.13, 18.26)	B1	Allow 18.3 for 18.26
3(a)	E	1	
3(b)	F	1	
3(c)	B	1	

Question	Answer	Marks	Partial Marks
4	Correct ruled sketch with $y=6$ and $x=9$ indicated as intercepts with axes	2	B1 for ruled line with negative gradient
5	Correct sketch with $x=-2$ and $(0,0)$ indicated as intercepts with x-axis	3	B1 for U-shaped curve B1 for $x(x+2)[=0]$ or better

Question		Answer	Marks

Question	Answer	Marks	Partial Marks
8(a)	5,3 and -3	3	B1 for each OR M2 for $[2](x-5)(x-3)(x+3)[=0]$ or for $x=5$ and $x^{2}=9$ or M1 for [2] $\left(x^{2}-9\right)(x-5)$ or for $x-5=0$ and $2 x^{2}-18=0$
8(b)	Correct sketch and with x-intercepts indicated at $-3,3$ and 5 and y-intercept at 90	3	B1 for positive cubic curve B1 for y-intercept at 90 soi B1FT for their 3 roots from part (a) indicated on sketch
9	$6 x-4$	2	B1 for each term
10	293	4	B2 for $12 x^{2}-7$ or B1 for each correct term M1 for substituting $x=5$ into their derivative
11	$(2,-11)$ and $(-2,21)$	4	B3 for one correct pair of coordinates or for $x=2$ and $x=-2$ or M2 for $x^{2}=4$ or better or M1 for $3 x^{2}-12=0$

Question	Answer	Marks	Partial Marks
12	$(-4,4)$	6	B4 for $x=-4$ or M3 for $2 x+3=-5$ OR B2 for $2 x+3$ or B1 for either $2 x$ or 3 M1 for their derivative $=-5($ their derivative must be in terms of $x)$ AND M1 for substituting their x into $y=x^{2}+3 x$
13	$y=-11 x-1$	7	B2 for $6 x-5$ or $\mathbf{B 1}$ for one correct term B2 for gradient $=-11$ or M1 for substituting $x=-1$ into their derivative B1 for $(-1,10)$ soi M1 for substituting (-1 , their 10) into $y=$ their $m x+c$
14	$\left(\frac{1}{3},-\frac{23}{27}\right)$ oe and $(-5,75)$	6	B5 for one pair of coordinates or for $x=\frac{1}{3}$ oe and $x=-5$ OR B3 for $(3 x-1)(x+5)$ or B2 for $3 x^{2}+14 x-5$ or B1 for 1 or 2 terms correct in $3 x^{2}+14 x-5$ M1 for their $\mathrm{d} y / \mathrm{d} x=0$ M1 for attempted solution of their 3-term quadratic
15	$\begin{aligned} & 180-95-28=57 \\ & \text { or } 180-95-57=28 \end{aligned}$	M1	
	ASA oe	A1	

Question	Answer	Marks	Partial Marks
16(a)	$A C=E D[=10 \mathrm{~cm}]$ given Angle $A B C=90$ angle in semicircle Angle $D C E=90$ angle between tangent and radius $=90$ Angle $B A C=38$ alternate segment Angle $C D E=38$ angles in a triangle	M5	M1 for each correct statement with reason or angle $A C B=52$ angle between tangent and radius $=90$ and angle $B A C=38$ angles in a triangle Accept other equivalent arguments with reasons If 0 scored, SC1 for 3 correct pairs of sides or angles with no/ incorrect reasons
	[congruent] ASA oe	A1	
16(b)	2.12	3	B2 for $C D=7.88$ or M1 for $\frac{C D}{10}=\sin 52$ oe or better
17	68	2	M1 for angle $B C E=19$ or angle $A B C=68$
18	Angle $A B C=72$ Alternate segment OR Angle $B C D=44$ Angles on a straight line	B2	B1 for angle and B1 for reason
	Angle $A B D=72 \div(1+3)$ or angle $D B C=72 \div(1+3) \times 3$	M1	Allow for correct use of their 72
	Angle $B A D=64$ Alternate segment OR Angle $B D C=82$ Angles in a triangle	B2	B1 for angle and B1 for reason
	Angle $A D B=98$ Angles in a triangle or angles on a straight line (if using angle $B D C$)	B2	B1 for angle and B1 for reason
19	$(90,1)$ and $(270,-1)$	2	B1 for each coordinate pair or for both x-values or for both y-values
20	290	1	

Question	Answer	Marks	Partial Marks
21	Correct sketch	2	B1 for correct shape passing through (0, 0)
22	135 and 315	3	B2 for one correct or M1 for $\tan x=-1$ or better
23	240	3	B2 for $x=120$ or M1 for $\cos x=-0.5$ or better
24(a)	1.7, 0, -1.7, -1	4	B1 for each
24(b)	Correct graph	4	B3FT for 12 or 13 correct plots or B2FT for 10 or 11 correct plots or B1FT for 8 or 9 correct plots
24(c)	15 to 17 and $43 \text { to } 45$	2	FT their curve intersection with $y=1.5$ B1FT for each
25	$\frac{2}{11}$ oe	3	B1 for 11 'pairs' with 2 on one of the dice soi B1 for 2 required outcomes giving total of 5 soi

Question	Answer	Marks	Partial Marks
26	$\frac{693}{2210}$ oe	4	M3 for $3 \times \frac{7}{52} \times \frac{45}{51} \times \frac{44}{50}$ oe or M2 for $\frac{7}{52} \times \frac{45}{51} \times \frac{44}{50}$ oe or M1 for one correct probability e.g. $\frac{7}{52}$ or $\frac{45}{51}$ or $\frac{44}{50}$ oe seen (could be $\frac{45}{52}$ or $\frac{44}{51}$ or $\frac{7}{50}$ or $\frac{45}{52}$ or $\frac{7}{52}$ or $\frac{44}{50}$) oe If 0 scored, SC1 for final answer $\frac{14175}{140608}$ oe
27	8.2	2	B1 for answer figs 82 or for [total =] 98.4 or M1 for their total $\div 12$
28(a)	26	1	
28(b)	28	1	
28(c)	26.9 or $26.92 \ldots$	2	M1 for $\frac{7}{26}$ oe FT their (a)
29	Correct box plot	4	B1 for minimum at 4.90 and maximum at 6.50 B1 for LQ at 5.30 and UQ at 5.95 B1 for median at 5.55 B1 for their correctly drawn box plot
30(a)(i)	[0].34	1	
30(a)(ii)	1.63	1	
30(b)	The boys are taller oe nfww and median for girls is 1.6 and median for boys is their 1.63	B2	FT their (a)(ii) B1 for each their 1.63 must be greater than 1.6
	The girls' heights are less consistent oe nfww and IQR for girls is 0.16 and IQR for boys is 0.11	B2	B1 for each Accept girls' IQR is bigger as the box is longer oe Accept range for girls is 0.41 and range for boys is their 0.34 where their 0.34 is less than 0.41

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
Tel: +44 (0)1223553554 Fax: +44 (0)1223 553558
Email: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES April 2020

